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ABSTRACT 

This study proposes a methodology for the calibration of microscopic traffic flow simulation 

models by enabling simultaneous selection of traffic links and associated parameters. That is, any 

number and combination of links and model parameters can be selected for calibration. Most 

calibration approaches consider the entire network without enabling a specific selection of location 

and associated parameters. In practice, only a subset of links and parameters are used for 

calibration based on a number of factors such as expert local knowledge of the system. In this 

study, the calibration problem for the simultaneous selection of links and parameters was 

formulated using a mathematical programming approach. The proposed methodology is capable 

of calibrating model parameters, taking into consideration multiple time periods and performance 

measures simultaneously. The performance measures used in this study were volume and speed. 

The methodology was developed without considering the characteristics of a specific traffic flow 

model. So, the methodology could be applied to any traffic flow model. A genetic algorithm was 

implemented to determine the solution to the proposed mathematical program for the calibration 

of microscopic traffic flow models. In the experiments, two traffic models were calibrated. The 

first set of experiments included selection of links only, while all associated parameters were 

considered for calibration. The second set of experiments considered simultaneous selection of 

links and parameters. Results showed that the models were calibrated successfully subject to 

selection of a minimum number of links. All parameter values were reasonable and within 

constraints after successful calibration. 
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CHAPTER 1: INTRODUCTION 

Microscopic traffic flow simulation is increasingly being used to analyze complex scenarios for a 

broad range of objectives. One of the most important and challenging aspects for obtaining 

meaningful results is calibration which involves adjusting the parameters to enhance the ability of 

the model to generate local traffic conditions (Dowling, Skabardonis, Halkias, McHale, & Zammit, 

2004; Holm, Tomich, Sloboden, & Lowrance, 2007). Existing calibration approaches propose 

various optimization algorithms and varying sets of calibration parameters. Sequential as well as 

simultaneous calibration of model parameters is proposed in the literature.   

For example, the calibration approach provided by Federal Highway Administration 

(FHWA) in the Traffic Analysis Toolbox Volume IV (Holm et al., 2007) suggests a sequential 

process of calibrating capacity at key bottlenecks, traffic volumes and system performance. Model 

parameters are adjusted by modifying global parameters first, then link parameters and then route 

choice parameters. Ma, Dong, & Zhang (2007) used a sequential approach to calibrate global and 

local parameters separately. Jha et al. (2004) calibrated driver behavior parameters separately from 

other parameters such as route choice factors and O-D flows. An iterative approach was used where 

one group of parameters were calibrated while others remained fixed. Issues associated with the 

use of a sequential calibration process include difficulty to research convergence and stable 

solutions (Paz, Molano, & Gaviria, 2012; Paz, Molano, Martinez, Gaviria, & Arteaga, 2015) 

Many mathematical programing formulations have been proposed to characterize and solve 

the problem of calibrating simulation-based traffic flow models. A simplex algorithm was 

proposed to calibrate microscopic traffic flow simulation models using Intelligent Transportation 

Systems data (Kim & Rilett, 2003). The proposed algorithm produced better results for congested 

conditions compared with uncongested traffic. Slow convergence was observed after an adequate 
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set of parameters was found. Manual calibration provided better results for uncongested conditions 

compared with congested traffic scenarios. Various Genetic Algorithms (GAs) have been proposed 

to calibrate microscopic simulation models (Cheu, Jin, K-C. Ng, Y-L. Ng, & Srinivasan, 1998; 

Cunha, Bessa, & Setti, 2009; Jha et al., 2004; Kim & Rilett, 2001; J. Ma et al., 2007; T. Ma & 

Abdulhai, 2002) with great results and relative fast convergence. Simultaneous Perturbation 

Stochastic Approximation (SPSA) algorithms have also been widely used to calibrate microscopic 

simulation models (Balakrishna, Antoniou, Ben-Akiva, & Koutsopoulos, 2007; Lee, 2008; J. Ma 

et al., 2007; Paz et al., 2012). SPSA was found to provide similar level of accuracy and less number 

of iterations and computation time compared with GAs and trial-and-error Iterative Adjustment 

(IA) algorithms (Balakrishna et al., 2007). A memetic algorithm (MA) was found to be superior 

to a SPSA algorithm because the required fine-tuning process was significantly quicker for the 

MA (Paz et al., 2015). Cobos et al. (2016) proposed that when a MA was adapted using Solis and 

Wets local search chains (MA-SW-Chains), it provided better and faster convergence compared 

to both SPSA and MA. A multi-objective MA based on NSGA-II and simulated annealing (NSGA-

II-SA), also provided better results for runtime and convergence compared to a single objective 

MA (Cobos et al., 2016). 

Microscopic traffic flow simulation models use the concept of car-following and lane 

changing theories to represent vehicle interactions and driver behavior dynamics (Holm et al., 

2007; Halati, Lieu, & Walker, 1997). Typically, calibration parameters are related to driver 

characteristics, such as car-following behavior and gap-acceptance. Balakrishna et al. (2007) 

proposed the calibration of demand and supply parameters simultaneously. However, the 

calibration was performed only with link counts and used pre-calibrated values for driver behavior 

parameters. Cheu et al. (1998) used parameters such as free flow speeds, car-following distance, 
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car-following sensitivity factors, lag to accelerate/decelerate and lane changing factors. Results 

showed that free flow speeds, car-following distance and car-following sensitivity factors were the 

most sensitive and important. That is, calibration using only these three parameters could be 

performed instead of using all the parameters. Kim & Rilett (2003, 2001) considered for calibration 

parameters associated with acceleration/deceleration, car-following and lane-changing behavior. 

The lane change probability and car following distance were found to have relatively close 

calibrated and default values suggesting that calibration could be performed without the inclusion 

of these parameters. Performance measures after calibration showed consistency with actual field 

values; however, no standard criteria for calibration was defined. Paz et al. (2012, 2015) calibrated 

microscopic traffic flow models considering the entire set of model parameters simultaneously. 

The simultaneous selection of all parameters was motivated by the need to seek convergence and 

stability of the solutions. All parameters were treated equally and a subset of parameters that may 

significantly affect a traffic model were not identified. 

Most of the existing literature considers the entire set of links and parameters for 

calibration. In practice, only a subset of links and parameters can be used for calibration. For 

example, certain links of a network may be pre-calibrated and/or default or pre-specified values 

are required by the owner of the facilities or model. That is, development and calibration may be 

restricted to adjust only a subset of all the potentially available parameters in the traffic flow model. 

Based on local knowledge and experience, owners usually have preferences about what parameters 

to adjust for specific traffic facilities (S.J. Kim, 2006; Ciuffo, Punzo & Torrieri, 2008). If all 

parameters are calibrated simultaneously, less known parameters may yield values that are 

unexplainable or inconsistent with real-world traffic behavior. 
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Contribution 

This research does not aim to identify the parameters that most significantly affect a traffic model, 

but to analyze the process of selection of required parameters for calibration of a traffic model. 

Unlike the traditional approaches that either involve a sequential process or consider all parameters 

simultaneously, this research proposes a methodology that enables the simultaneous selection of 

specific links/facilities and parameters for calibration. That is, any combination of traffic facilities 

and model parameters within each facility can be selected simultaneously for calibration. Local 

and global calibration parameters are considered. The capability of selecting where and what to 

calibrate is motivated by the requirements to use local knowledge and constraints to define the 

parameters to calibrate. 

Objectives 

The objectives of this study are: 

1. To develop and propose a framework and solution algorithm that enables simultaneous 

selection of specific links and parameters to calibrate microscopic traffic simulation 

models. 

2. To perform extensive sensitivity analysis using different parameters on multiple traffic 

models. 
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CHAPTER 2: METHODOLOGY 

The calibration methodology used in this study is a modified approach from Paz et al., (2015). The 

modified calibration approach has the capability to select links and model parameters. The 

calibration problem was formulated using a mathematical programming approach. The normalized 

root mean square error, which is the objective function (1) for this study, measures the relative 

difference between actual and simulated traffic volumes and speeds. Normalization allows 

multiple performance measures to be considered simultaneously (Paz et al., 2015). 

Problem Formulation 

Notation and Terms 

K Set of links selected for calibration 

K Subscript for a link selected for calibration, k ∈ K 

𝑃 Set of local model parameters  

P Superscript for a local model parameter, p ∈ P 

𝛼𝑘
𝑝
 Local parameter p on link k selected for calibration, ∀ k ∈ K, p ∈ P 

𝛼𝑘 Set of local parameters on link k selected for calibration, ∀ k ∈ K 

𝛿𝑘
𝑝
 Indicator variable for local parameter p on link k selected for calibration, ∀ k ∈ K, p 

∈ P, 𝛿𝑘
𝑝 = 1 ⟺ 𝛼𝑘

𝑝 ∈ 𝛼𝑘; otherwise, 𝛿𝑘
𝑝 = 0 

𝛼 Set of local parameters selected for calibration, α ∈ P 

G Set of global model parameters 

G Superscript for a global model parameter, g ∈ G 

𝛽𝑔 Global parameter selected for calibration g, ∀ g ∈ G 

𝛽 Set of global parameters selected for calibration, β ∈ G 

𝛿𝑔 Indicator variable for global parameter g selected for calibration, ∀ g ∈ G, 𝛿𝑔 = 1 ⟺

𝛽𝑔 ∈ 𝛽; otherwise, 𝛿𝑔 = 0 

𝜃 Set of all parameters selected for calibration, 𝜃 = 𝛼 ∪ 𝛽 

L Set of links with actual field data 

L Subscript for a link with actual field data, l ∈ L 

T Total number of time periods 
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T Subscript for a time period, 𝑡 ∈ 𝑇 

𝑉𝑙,𝑡 Actual volume for link l at time period t, ∀ t ∈ T, l ∈ L 

𝑆𝑙,𝑡 Actual speed for link l at time period t, ∀ t ∈ T, l ∈ L 

𝑊𝑣 Weigh factor for volumes 

�̂�(𝜃)𝑙,𝑡 Simulated volume for link l at time period t, ∀ t ∈ T, l ∈ L 

�̂�(𝜃)𝑙,𝑡 Simulated speed for link l at time period t, ∀ t ∈ T, l ∈ L 

 

In this study, any number and combination of local and global parameters can be selected 

for calibration. Indicator variables, 𝛿𝑘
𝑝  and 𝛿𝑔, are used to define which parameters are selected 

for calibration. The objective function and the calibration criteria are evaluated using links L with 

available actual field data. 

Objective Function 

The normalized root mean square error (NRMS) is calculated as follows: 

Minimize NRMS 

=
1

√|𝐿|
∗ ∑ (𝑊𝑣 ∗ √∑ (

𝑉𝑙,𝑡−𝑉(𝜃)𝑙,𝑡

𝑉𝑙,𝑡
)

2
|𝐿|
𝑙 + (1 − 𝑊𝑣) ∗ √∑ (

𝑆𝑙,𝑡−�̂�(𝜃)𝑙,𝑡

𝑆𝑙,𝑡
)

2
|𝐿|
𝑙 )𝑇

𝑡=1   (1) 

Constraints 

𝛼𝑘 = {𝛼𝑘 
𝑝 |  ⩝  𝛿𝑘

𝑝 = 1, 𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃 } (2.1) 

𝛼 = ⋃ 𝛼𝑘 𝑘 ∈ 𝐾  (2.2) 

𝛽 = {𝛽𝑔| ⩝  𝛿𝑔 = 1, 𝑔 ∈ 𝐺 } (2.3) 

𝜃 = 𝛼 ∪ 𝛽 (2.4) 

Lower bound ≤ 𝛼𝑘 
𝑝 ≤  Upper bound (2.5) 

Lower bound ≤ 𝛽𝑔 ≤  Upper bound (2.6) 

 

The Objective (1) is to minimize the normalized weighted root mean square error over T 

number of time periods and links L.  



www.manaraa.com

7 

 

Constraints (2.1) and (2.2) ensure that local parameters selected for calibration are included 

in vector θ. Similarly, constraint (2.3) ensures that global parameters selected for calibration are 

included in vector θ. Eq. (2.4) is a definitional constraint for calibration vector θ. Constraints (2.5) 

and (2.6) provided lower and upper bounds for each parameter selected for calibration.  

Calibration Criteria 

The criterion for calibration is based on guidelines provided by FHWA (Holm et al., 2007). For 

individual links, for more than 85% of cases, the difference between actual and simulated counts 

should be within 100 vehicles/hour for link volumes less than 700 vehicles/hour; within 15% of 

field flow for link volumes between 700 and 2700 vehicles/hour; and within 400 vehicles/hour for 

link volumes greater than 2700 vehicles/hour. The sum of all simulated link count errors should 

be within 5% of all actual link counts. The GEH statistic for individual link flows should be less 

than 5 for more than 85% of cases (Dowling et al., 2004; Holm et al., 2007). The GEH statistic is 

given by: 

GEH = √
2(𝑉𝑙−𝑉(𝜃)𝑙)2

𝑉𝑙+�̂�(𝜃)𝑙
 (3) 

where, 𝑉𝑙 is the actual traffic volume for link 𝑙, and  �̂�(𝜃)𝑙 is the corresponding simulated 

traffic volume. 

Solution Algorithm 

The proposed mathematical program, (Eq. 1 – 2.6), is solved using a GA which was found to 

converge relatively quickly for CORSIM models with many parameters (Kim & Rilett, 2001). The 

GA searches solutions trying to avoid stopping at local optima and seeking to increase the 

probability of locating a global optimum (Cheu et al., 1998; Cunha et al., 2009; Gen & Cheng, 

2000; Goldberg, 1989; Jha et al., 2004; Kim & Rilett, 2001; J. Ma et al., 2007; T. Ma & Abdulhai, 

2002). In the context of GA, a population is generated at random initially. An individual in a 
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population is represented by a set of calibration parameter values, which is a viable solution. The 

quality of the resulting solution is evaluated by a fitness or objective function as in (1). GA creates 

successive generations of individuals. The best individuals are stored to create a new population. 

The GA performs the following steps as described by Paz et.al (2015), and depicted by the 

flowchart in Figure 1. 

Step 1 – Initialization 

An initial population of θs is randomly generated but constrained by lower and upper bounds to 

maintain model realism.  

Step 2 – Parents selection 

The best 60% of parameter sets from the initial population are saved. Then, sets of θ that represent 

parents in the population are generated and paired using a ‘roulette wheel selection’.  

Step 3 – Crossover 

A crossover is performed at 50%. This process combined parent θs to generate new sets of 

calibration parameters (offsprings). 

Step 4 – Mutation 

Approximately 30% of the parameters of each offspring are subject to small perturbations (±1%) 

to investigate neighboring solutions. 

Step 5 – Population management strategy 

The new offspring θ replace the worst θs when new θ provides a better fitness function than older 

θs. 
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Step 6 – Stopping Criteria 

If the stopping criterion is met, the best θ is stored and the algorithm ends. Otherwise, it returns to 

Step 2. The stopping rule is determined by reaching a pre-specified maximum number of 

generations/iterations. 

 

Figure 1. Flowchart Illustrating the Proposed Solution Algorithm. 
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CHAPTER 3: EXPERIMENTS AND RESULTS 

The proposed methodology and solution algorithm was tested using CORSIM models. CORSIM 

incorporates two microscopic simulation models, NETSIM and FRESIM, that together constitute 

a whole traffic environment. NETSIM is for surface street simulation, and FRESIM is for freeway 

simulation. CORSIM includes driver behavior and vehicle performance parameters (McTransTM 

Center, 2017). Table 1 lists the various calibration parameters in CORSIM (Paz et al., 2015, p. 5) 

Table 1. Calibration Parameters in CORSIM Models (Paz et al., 2015) 
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Two CORSIM models were used in the experiments. Both models include surface streets 

(arterials) with signalized intersections. For signal controlled intersections, one of the important 

parameters is the discharge headway of individual vehicles (Hung, Tian, and Tong, 2002; Holm et 

al., 2007). 

Experimental Setup 

The proposed solution algorithm was implemented using Java, which is capable of handling 

complex data structures and mathematical functions. As mentioned in Paz et al., (2015), the 

implementation uses a basic layered architecture and each layer performs a group of related 

functions.  

Volume and speed data were used for calibration. The CORSIM models were run for a 

simulation time period of 15 minutes. The first set of experiments incorporated selection of links 

in the network. The second set of experiments incorporated simultaneous selection of links and 

parameters. 

First Set of Experiments: Selection of Links in the Network 

In the first set of experiments, links were selected for calibration randomly. All global and local 

parameters for the selected links were considered simultaneously for calibration.  

The first group of experiments was completed using the Reno network, which is a CORSIM 

model of the Pyramid Highway in Reno, Nevada. Figure 2 illustrates this network. This model 

consists of 126 arterial links; 45 of them had calibration data. A link is a segment of a network that 

receives/exits traffic from/to adjoining subnetworks. 

The local parameters included mean queue discharge headway and mean value of start-up 

lost time. The global parameters included lane change, acceptable gap in near-side cross traffic for 
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vehicles at a sign, additional time for far-side cross traffic in acceptable gap for vehicles at a sign, 

and driver’s familiarity with paths distribution.  

When 70% of links were selected, the model was calibrated successfully. Figure 3 shows 

how the objective function converges when 70% of the links were selected for calibration. The 

NRMS shows improvement through the iterations of the calibration process. Initially, the value of 

NRMS was 0.22. After 845 iterations, the NRMS decreased by 63% to 0.08. 

 

Figure 2. Reno Network 

  

Figure 3. Objective Function when All Parameters were Considered and 70% Links were 

Selected for Calibration of Reno Network. 
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Figure 4 shows vehicle counts before and after calibration. Before calibration, the actual 

and simulated counts do not match, especially for higher values. After calibration, the difference 

between actual and simulated counts is reduced as illustrated by their alignment along the 45º line 

in Figure 4. Figure 5 shows the vehicle speeds before and after calibration. The speed data are 

scattered away from the 45º line more than the volume data. The reason could be that a higher 

weight was assigned to volume than speed data because of greater confidence in volume data. 

From the observation of Figure 4 and Figure 5, higher volumes and lower speeds were calibrated 

better. This suggests that networks under congested conditions could be calibrated better than their 

counterparts. Figure 6 shows the GEH statistic for the model before and after calibration. Initially, 

the GEH value was less than 5 for 46% of the selected links. After calibration, the GEH value was 

less than 5 for 93% of the selected links.  

 

Figure 4. Volumes Before and After Calibration when All Parameters were Considered and 70% 

Links were Selected in Reno Network. 
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Figure 5. Speeds Before and After Calibration when All Parameters were Considered and 70% 

Links were Selected in Reno Network. 

 

Figure 6. GEH Statistics when All Parameters were Considered and 70% Links were Selected for 

Calibration in Reno Network. 

Table 2 shows the percentage of selected links and the corresponding calibration results 

when all parameters were selected simultaneously for calibration. The network was successfully 

calibrated when at least 60 % of links were selected.  
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Table 2. Calibration Results for Reno Network when All Parameters were Considered 

 

A second group of experiments was completed using another model illustrated in Figure 7 

and provided by McTrans. This model consists of 20 arterial links. The default parameters were 

considered as calibrated conditions. The outputs from this model, vehicle counts and speed, were 

used as field data for the experiments. Model parameters were randomly modified to represent an 

uncalibrated model.  

 

Figure 7. McTrans Model. 
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Links were randomly selected for calibration. Local parameters included mean queue 

discharge headway and mean start-up lost time. Global parameters included driver’s familiarity 

with paths distribution that included percentage of drivers that know only one turn movement and 

percentage of drivers that know two turn movements. 

When 70% of links were selected, the network was calibrated successfully. Figure 8 shows 

the convergence of the objective function. The initial value of NRMS was 0.29. After 370 

iterations, the NRMS decreased by 79% to 0.06. 

 

Figure 8. Objective Function when All Parameters were Considered and 70% Links were 

Selected for Calibration of McTrans Model. 

Figure 9 shows the vehicle counts before and after calibration. The difference between 

actual and simulated counts is minimized by the calibration process. This is illustrated by the 

alignment of results along the 45º line. Figure 10 shows the speeds before and after calibration. 

Lower speeds suggest congested conditions. After calibration, actual and simulated speeds align 

along the 45ºline. Figure 11 shows the GEH statistic for the model before and after calibration. 

The initial GEH value was less than 5 for 55% of the selected links. After calibration, the GEH 

value was less than 5 for 100% of links. 
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Figure 9. Volumes Before and After Calibration when All Parameters were Considered and 70% 

Links were Selected in McTrans Model. 

 

Figure 10. Speeds Before and After Calibration when All Parameters were Considered and 70% 

Links were Selected in McTrans Model. 
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Figure 11. GEH statistics when All Parameters were Considered and 70% Links were Selected 

for Calibration of McTrans Model. 

Table 3 shows the percentage of links selected and their respective calibration criteria when 

all parameters were selected simultaneously for calibration. The network was successfully 

calibrated when at least 60 % of links were selected.  

Table 3. Calibration Results for McTrans Model when All Parameters were Considered  

 

Second Set of Experiments: Simultaneous Selection of Links and Parameters  

In the second set of experiments, links and associated parameters were selected simultaneously. 

These experiments were conducted using different combinations of parameters.  



www.manaraa.com

19 

 

First Combination 

First, local parameters were selected for every link while global parameters were set as default. 

Table 4 shows the selected percentage of links and the corresponding results when only local 

parameters were selected for calibration of the Reno network. The network was successfully 

calibrated when at least 70 % of links were selected for calibration. 

Table 4. Calibration Results for Reno Network when Local Parameters were Considered 

 

Figure 12 shows the convergence of the objective function when 70% of links were 

selected for calibration. The NRMS decreased from 0.22 to 0.09 after calibration. 

 

Figure 12. Objective Function when Local Parameters were Considered and 70% Links were 

Selected for Calibration of Reno Network. 
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Figure 13 and Figure 14 shows the vehicle counts and speeds before and after calibration 

respectively. Both vehicle counts and speeds align closer to the 45º line after calibration. 

 

Figure 13. Volumes Before and After Calibration when Local Parameters were Considered and 

70% Links were Selected in Reno Network. 

 

Figure 14. Speeds Before and After Calibration when Local Parameters were Considered and 

70% Links were Selected in Reno Network. 

Figure 15 shows the GEH statistic for the model after calibration. The initial GEH value 

was less than 5 for 46% of the selected links. After calibration, the GEH value was less than 5 for 

95% of links. 
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Figure 15. GEH Statistics when Local Parameters were Considered and 70% Links were 

Selected for Calibration of Reno Network. 

Table 5 provides results when only local parameters were selected for calibration of the 

McTrans model. The model was successfully calibrated using at least 50% of the links for 

calibration. 

Table 5. Calibration Results for Mctrans Model when Local Parameters were Considered  

 

Figure 16 shows the convergence of the objective function when 70% of links were 

selected for calibration. The network was successfully calibrated. The NRMS decreased from 0.29 

to 0.09 after calibration. 
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Figure 16. Objective Function when Local Parameters were Considered and 70% Links were 

Selected for Calibration of McTrans Model. 

Figure 17 and Figure 18 shows the vehicle counts and speeds before and after calibration, 

respectively. Both vehicle counts and speeds align closer to the 45º line after calibration. 

 

Figure 17. Volumes Before and After Calibration when Local Parameters were Considered and 

70% Links were Selected in McTrans Model. 
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Figure 18. Speeds Before and After Calibration when Local Parameters were Considered and 

70% Links were Selected in McTrans Model. 

Figure 19 shows the GEH statistic for the model after calibration. The initial GEH value 

was less than 5 for 55% of the selected links. After calibration, the GEH value was less than 5 for 

100% of links. 

 

Figure 19. GEH Statistics when Local Parameters were Considered and 70% Links were 

Selected for Calibration of McTrans Model. 

Second Combination 

Second, mean queue discharge headway was selected as the only local parameter for calibration; 

all global parameters were considered. Table 6 provides results when the mean queue discharge 
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headway and all global parameters were selected for calibration of the Reno network. The network 

was successfully calibrated when at least 60% of the links were selected for calibration. 

Table 6. Calibration Results for Reno Network when All Global Parameters and Mean Queue 

Discharge Headway was Considered 

 

Figure 20 shows the convergence of the objective function when 70% of links were 

selected for calibration. The NRMS decreased from 0.22 to 0.08 after calibration. 

 

Figure 20. Objective Function when All Global Parameters and Mean Queue Discharge 

Headway was Considered for Calibration with 70% Link Selection in Reno Network. 

Figure 21 and Figure 22 shows the vehicle counts and speeds before and after calibration 

respectively. Both vehicle counts and speeds align closer to the 45º line after calibration. 
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Figure 21. Volumes Before and After Calibration when All Global Parameters and Mean Queue 

Discharge Headway was Considered with 70% Link Selection in Reno Network. 

 

Figure 22. Speeds Before and After Calibration when All Global Parameters and Mean Queue 

Discharge Headway was Considered with 70% Link Selection in Reno Network. 

Figure 23 shows the GEH statistic for the model after calibration. The initial GEH value 

was less than 5 for 46% of the selected links. After calibration, the GEH value was less than 5 for 

100% of links. 
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Figure 23. GEH Statistics when All Global Parameters and Mean Queue Discharge Headway 

was Considered for Calibration with 70% Link Selection in Reno Network. 

Table 7 provides results when mean queue discharge headway and all global parameters 

were selected for calibration of the McTrans model. The network was successfully calibrated with 

at least 60% of links selected for calibration. 

Table 7. Calibration Results for Mctrans Model when All Global Parameters and Mean Queue 

Discharge Headway was Considered 

 

Figure 24 shows the convergence of the objective function when 70% of links were 

selected for calibration. The NRMS decreased from 0.29 to 0.12 after calibration. 
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Figure 24. Objective Function when All Global Parameters and Mean Queue Discharge 

Headway was Considered for Calibration with 70% Link Selection in McTrans Model. 

Figure 25 and Figure 26 shows the vehicle counts and speeds before and after calibration 

respectively. Both vehicle counts and speeds align closer to the 45º line after calibration. 

 

Figure 25. Volumes Before and After Calibration when All Global Parameters and Mean Queue 

Discharge Headway was Considered with 70% Link Selection in McTrans Model. 
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Figure 26. Speeds Before and After Calibration when All Global Parameters and Mean Queue 

Discharge Headway was Considered with 70% Link Selection in McTrans Model. 

Figure 27 shows the GEH statistic for the model after calibration. The initial GEH value 

was less than 5 for 55% of the selected links. After calibration, the GEH value was less than 5 for 

95% of links. 

 

Figure 27. GEH Statistics when All Global Parameters and Mean Queue Discharge Headway 

was Considered for Calibration with 70% Link Selection in McTrans Model. 

Third Combination 

Third, mean start-up lost time was selected as the only local parameter for calibration; all global 

parameters were considered. The results show that it was not possible to calibrate the model under 



www.manaraa.com

29 

 

this scenario. Table 8 provides results when mean start-up lost time and all global parameters were 

selected for calibration of the Reno network.  

Table 8. Calibration Results for Reno Network when All Global Parameters and Mean Start-Up 

Lost Time was Considered  

 

Table 9 provides results when mean start-up lost time and all global parameters were 

selected for calibration of the McTrans model.  

Table 9. Calibration Results for Mctrans Model when All Global Parameters and Mean Start-Up 

Lost Time was Considered  

 

Fourth Combination 

Fourth, mean queue discharge headway and mean start-up lost time were selected as mutually 

exclusive while all global parameters were considered for calibration. Table 10 provides the results 

using different percentages of mean queue discharge headway and mean start-up lost time while 

all global parameters were considered for calibration of the Reno network. This network was 

successfully calibrated when mean queue discharge headway was selected for at least 80% of links 

and mean start-up lost time was selected for the remaining 20% of links. 
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Table 10. Calibration Results for Reno Network when Selectin of Mean Queue Discharge 

Headway and Mean Start-Up Lost Time was Mutually Exclusive 

 

Table 11 provides the results using different percentages of mean queue discharge headway 

and mean start-up lost time while all global parameters were considered for calibration of the 

McTrans model. This network was successfully calibrated when mean queue discharge headway 

was selected for at least 90% of links and mean start-up lost time was selected for the remaining 

10% of links. 

Table 11. Calibration Results for McTrans Model when Selection of Mean Queue Discharge 

Headway and Mean Start-Up Lost Time was Mutually Exclusive 
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CHAPTER 4: SENSITIVITY ANALYSIS 

Various sensitivity analyses were conducted to observe the effects on NRMS of different 

percentage selection of links and different combination of parameters. The results are illustrated 

in Figure 28 and Figure 29. Figure 28 shows the effects on NRMS due to various percentages of 

link selection for calibration.  

 

Figure 28. Effect on NRMS of Various Percentages of Link Selection for Calibration. 

In Figure 29, set 1 includes all global and local parameters that were selected 

simultaneously for 70% of the links; set 2 includes global parameters set as default and all local 

parameters selected for 70% of the links; set 3 includes all global parameters and mean queue 

discharge headway selected for 70% of the links; set 4 includes all global parameters and mean 

start-up lost selected for 70% of the links; and set 5 includes all global parameters, and mutually 
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exclusive mean queue discharge headway and mean start-up lost selected at 70% and 30% of the 

links respectively. 

 

Figure 29. Effect on NRMS of Various Sets of Parameters for Calibration. 

As expected, the results show that most of the times the NRMS decreases with the increase 

in the percentage of selected links for calibration. The NRMS value changes for various sets of 

parameters for the same percentage of links selected for calibration. Similar values of NRMS 

between a calibrated and an uncalibrated condition do not suggest that all calibration criteria have 

been met in both cases. 
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CHAPTER 5: CONCLUSION 

This study proposed a methodology that enables the selection of any combination of facilities and 

local and global parameters for the calibration of micro-simulation traffic flow models. A 

mathematical program and solution algorithm were proposed to implement the methodology. 

Results using two network models and various sensitivity analyses show the effectiveness of the 

methodology. The models were successfully calibrated for volumes and speeds subject to selection 

of a minimum number of links for calibration.  

The percentage of links selected for calibration was varied from a minimum to a 100 

percent. Similarly, various local parameters were selected for the corresponding links. Multiple 

experiments were performed varying the selection of global and local calibration parameters. 

Unselected parameters were assigned default values. 

The experiments were tested using CORSIM models. However, the methodology was 

developed without considering the characteristics of a specific traffic flow model. Future work 

involves testing the methodology using other traffic flow models. New algorithms and methods 

could be developed and explored to reduce the number of links that are required to calibrate a 

traffic network. Similarly, a multi-objective optimization approach could be proposed (Cobos et 

al., 2016) in contrast to the single objective function used in this study to get superior results. 
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APPENDIX A: USER’S GUIDE TO THE CALIBRATION TOOL 

The proposed methodology was implemented by developing a calibration tool that uses a 

Graphical User Interface (GUI). The calibration tool visualizes the process of calibration in a 

number of steps, which are as shown below. 

 Step 1: Network Selection 

For CORSIM models, the input (“trf”) file consists of Record Types (RT) that contain information 

on geometry, traffic flow and calibration parameters. From the main menu of the calibration tool, 

as shown in Figure A1. Main Menu of the Calibration tool, go to the “Select a trf file” option, then 

find the input file to open. Figure A2. Browse to Select the Input File of the Network shows the 

first step in which the input file of a network is located. 

 
Figure A1. Main Menu of the Calibration tool. 
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Figure A2. Browse to Select the Input File of the Network. 

Step 2: Parameter Selection 

In the second step, the calibration parameters along with their initial values are selected. Click on 

the “Use default parameters” button to load default values of the parameters. The users can enter 

a parameter of any record type as required and edit their minimum and maximum values by using 

the “Parameter Selection” menu, which is as shown in Figure A3. 

 

Figure A3. Parameters Selection. 
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Step 3: Selection of Specific Links and Parameters 

In the third step, the tool allows users to select specific links and parameters as desired for 

calibration. The users have an option to check or uncheck any link or any record type or any of its 

entries (the parameters) within the tool, which is shown in Figures A4 – A7. The unselected 

parameters have default values. 

 

Figure A4. Interface for Specific Links and Parameters Selection. 
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Figure A5. Link Selection for Calibration. 

 

Figure A6. Parameters Selection for Calibration. 
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Figure A7. List of Entries for Record Type. 

Step 4: Loading of Actual Data 

In this step, the actual vehicle counts and/or speeds are loaded for calibration. Users can manually 

enter, save and modify data to an editable table. Figure A8 and Figure A9 show the process of 

loading actual data. 

 

Figure A8. Loading of Actual Data. 
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Figure A9. Data Editor. 

Step 5: Search of Solution Set of Parameters 

In this step, the calibration is run by selecting an appropriate optimization algorithm for calibration, 

which is shown in Figure A10 – A11. 
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Figure A10. Run Calibration. 

 

Figure A11. Algorithm Setup. 
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Step 6: Visualization of Results 

In this step, the tool provides the results of calibration. It generates graphs showing the GEH 

statistics, vehicle counts, and speeds before and after calibration, which are shown in Figures A12 

– A15. The input (“trf”) file is replaced by the calibrated (“trf”) file. 

 

Figure A12. Visualization of Results. 

 

Figure A13. GEH Statistics. 
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Figure A14. Volumes before and after Calibration. 

 

Figure A15. Speeds before and after Calibration. 
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APPENDIX B: CALIBRATION PARAMETERS IN CORSIM MODELS 

Table B1—B6 shows the calibration parameters used in the experiments performed with the 

CORSIM models in this study. A few experiments that selected 70% of links are included, which 

are as follows. 

Table B1. Calibration Parameters in the First Experiment with Reno Network 

SN Model Parameter 
Lower 
bound 

Upper 
bound 

Units Links 

Value 

before 

calibration 

Value 

after 

calibration 

1 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-26 38 41 

2 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-41 36 42 

3 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-38 40 42 

4 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-27 38 38 

5 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-33 36 48 

6 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-35 38 85 

7 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-42 38 30 

8 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-48 38 75 

9 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-19 38 48 

10 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-21 40 81 

11 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-25 36 38 

12 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 10-31 40 56 

13 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-39 36 89 

14 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-40 38 34 

15 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-43 36 40 

16 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-44 40 42 

17 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-47 40 48 

18 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-49 26 48 

19 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-51 28 61 

20 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 22-45 28 26 

21 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 11-10 28 48 

22 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-3 26 36 

23 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 11-12 30 44 

24 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 12-11 30 32 

25 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-6 26 50 

26 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 12-13 23 21 

27 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-12 30 22 

28 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-5 30 30 

29 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-14 30 38 

30 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-15 48 90 

31 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-14 48 18 

32 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-4 45 15 

33 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 51-16 38 28 

34 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 17-1 34 38 

35 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 20-2 34 38 

36 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 43-14 30 34 

37 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 21-8 38 28 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value 

after 
calibration 

38 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 22-1 34 24 

39 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 23-8 34 19 

40 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 44-14 38 90 

41 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 24-9 30 34 

42 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 52-5 38 38 

43 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 26-1 30 57 

44 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 30-9 30 67 

45 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 30-10 28 70 

46 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 33-4 26 20 

47 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 28-15 30 74 

48 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 35-4 30 26 

49 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 54-16 28 30 

50 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 49-16 28 32 

51 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 55-7 26 26 

52 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 40-13 20 14 

53 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 41-1 28 14 

54 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 55-8 30 22 

55 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 27-3 36 38 

56 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-52 36 38 

57 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 31-10 38 74 

58 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 17-20 38 32 

59 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-20 36 96 

60 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 34-11 38 89 

61 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 28-54 40 87 

62 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-54 36 22 

63 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-55 40 48 

64 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 38-2 36 24 

65 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-55 36 59 

66 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 25-9 50 50 

67 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8018-18 40 42 

68 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8021-21 50 46 

69 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8023-23 44 40 

70 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8024-24 48 50 

71 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8027-27 46 36 

72 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8031-31 48 45 

73 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8033-33 44 50 

74 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8035-35 50 87 

75 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8038-38 48 23 

76 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8039-39 49 51 

77 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8040-40 40 92 

78 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8041-41 50 21 

79 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8043-43 48 46 

80 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8045-45 18 14 

81 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8046-46 26 34 

82 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8048-48 26 76 

83 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8050-50 26 93 

84 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8051-51 40 38 

85 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 20-17 40 24 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value 

after 
calibration 

86 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 54-28 48 52 

87 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-8 48 18 

88 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-9 40 32 

89 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-26 40 46 

90 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-41 42 20 

91 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-38 40 26 

92 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 3-27 42 40 

93 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-33 42 93 

94 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-35 42 40 

95 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-42 42 26 

96 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 6-48 38 20 

97 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 7-19 40 52 

98 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-21 40 42 

99 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 9-25 38 40 

100 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 10-31 38 37 

101 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-39 42 50 

102 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-40 40 92 

103 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 14-43 20 81 

104 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 14-44 20 60 

105 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 15-47 21 15 

106 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-49 20 43 

107 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-51 20 71 

108 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 22-45 20 20 

109 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 11-10 21 34 

110 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-3 21 20 

111 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 11-12 22 13 

112 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 12-11 21 72 

113 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-6 28 38 

114 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 12-13 35 27 

115 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-12 30 39 

116 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 6-5 30 27 

117 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-14 30 29 

118 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 14-15 32 33 

119 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 15-14 28 70 

120 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 3-4 35 33 

121 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 51-16 30 63 

122 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 17-1 42 47 

123 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 20-2 45 50 

124 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 43-14 42 44 

125 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 21-8 40 25 

126 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 22-1 42 49 

127 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 23-8 46 36 

128 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 44-14 40 1 

129 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 24-9 40 81 

130 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 52-5 38 2 

131 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 26-1 40 31 

132 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 30-9 42 13 

133 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 30-10 42 76 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value 

after 
calibration 

134 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 33-4 46 52 

135 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 28-15 18 6 

136 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 35-4 20 16 

137 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 54-16 20 14 

138 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 49-16 18 4 

139 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 55-7 20 23 

140 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 40-13 25 19 

141 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 41-1 30 89 

142 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 55-8 32 24 

143 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 27-3 32 26 

144 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-52 30 34 

145 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 31-10 30 47 

146 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 17-20 30 90 

147 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-20 30 34 

148 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 34-11 30 34 

149 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 28-54 40 50 

150 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-54 42 44 

151 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 7-55 48 29 

152 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 38-2 42 30 

153 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-55 42 0 

154 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 25-9 42 44 

155 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8018-18 40 38 

156 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8021-21 40 42 

157 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8023-23 42 99 

158 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8024-24 42 38 

159 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8027-27 40 40 

160 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8031-31 40 70 

161 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8033-33 46 40 

162 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8035-35 40 45 

163 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8038-38 40 74 

164 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8039-39 47 92 

165 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8040-40 43 51 

166 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8041-41 41 33 

167 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8043-43 41 64 

168 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8045-45 42 42 

169 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8046-46 40 10 

170 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8048-48 42 23 

171 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8050-50 40 48 

172 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8051-51 40 50 

173 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 20-17 42 61 

174 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 54-28 38 24 

175 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 9-8 38 38 

176 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-9 32 28 

177 NETSIM 
Duration of a lane-change 

maneuver 
1 8 Seconds  2 3 

178 NETSIM 

Mean time for a driver to react 

to a sudden deceleration of the 

lead vehicle 

1 30 Tenths of seconds  5 7 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value 

after 
calibration 

179 NETSIM 
Minimum deceleration for lane 

changing 
1 10 

Feet per second 
square 

 3 3 

180 NETSIM 

Difference in maximum and 
minimum acceptable 

deceleration for a mandatory 

lane change 

5 15 
Feet per second 

square 
 7 15 

181 NETSIM 

Difference in maximum and 

minimum acceptable 
deceleration for a discretionary 

lane change 

5 15 
Feet per second 

square 
 5 5 

182 NETSIM Deceleration rate of lead vehicle 10 15 
Feet per second 

square 
 10 10 

183 NETSIM 
Deceleration rate of follower 

vehicle 
10 15 

Feet per second 

square 
 10 11 

184 NETSIM 
Driver type factor used to 

compute driver aggressiveness 
15 50 N/A  20 39 

185 NETSIM Urgency threshold 0 5 
Tenths of a second 

squared per foot 
 1 3 

186 NETSIM Safety factor x 10 6 10 Tenths of units  6 8 

187 NETSIM 
Percentage of drivers who 

cooperate with a lane changer 
10 100 Percentage  30 60 

188 NETSIM 

Headway below which all 

drivers will attempt to change 
lanes 

1 30 Tenths of seconds  15 3 

189 NETSIM 
Headway above which no 

drivers will attempt to change 

lanes 

30 100 Tenths of seconds  40 40 

190 NETSIM 

Mean longitudinal distance over 

which drivers decide to perform 

one lane change 

50 2500 Feet  240 387 

191 NETSIM 
Acceptable Gap for Driver Type 

1 
15 75 Tenths of seconds  45 42 

192 NETSIM 
Acceptable Gap for Driver Type 

2 
15 75 Tenths of seconds  40 67 

193 NETSIM 
Acceptable Gap for Driver Type 

3 
15 75 Tenths of seconds  37 39 

194 NETSIM 
Acceptable Gap for Driver Type 

4 
15 75 Tenths of seconds  34 32 

195 NETSIM 
Acceptable Gap for Driver Type 

5 
15 75 Tenths of seconds  31 17 

196 NETSIM 
Acceptable Gap for Driver Type 

6 
15 75 Tenths of seconds  30 31 

197 NETSIM 
Acceptable Gap for Driver Type 

7 
15 75 Tenths of seconds  27 25 

198 NETSIM 
Acceptable Gap for Driver Type 

8 
15 75 Tenths of seconds  24 42 

199 NETSIM 
Acceptable Gap for Driver Type 

9 
15 75 Tenths of seconds  21 19 

200 NETSIM 
Acceptable Gap for Driver Type 

10 
15 75 Tenths of seconds  16 16 

201 NETSIM 
Additional Gap Time for 

Crossing 1 Lane 
10 75 Tenths of seconds  10 41 

202 NETSIM 
Additional Gap Time for 

Crossing 2 Lanes 
10 75 Tenths of seconds  19 19 

203 NETSIM 
Additional Gap Time for 

Crossing 3 Lanes 
10 75 Tenths of seconds  23 25 

204 NETSIM 
Additional Gap Time for 

Crossing 4 Lanes 
10 75 Tenths of seconds  28 31 

205 NETSIM 
Additional Gap Time for 

Crossing 5 Lanes 
10 75 Tenths of seconds  31 24 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value 

after 
calibration 

206 NETSIM 
Additional Gap Time for 

Crossing 6 Lanes 
10 75 Tenths of seconds  35 69 

207 NETSIM 
Additional Gap Time for 

Crossing 7 Lanes 
10 75 Tenths of seconds  38 52 

208 NETSIM 
Additional Gap Time for 

Crossing 8 Lanes 
10 75 Tenths of seconds  41 61 

209 NETSIM 
Additional Gap Time for 

Crossing 9 Lanes 
10 75 Tenths of seconds  44 46 

210 NETSIM 
Additional Gap Time for 

Crossing 10 Lanes 
10 75 Tenths of seconds  46 47 

211 NETSIM 
Percentage of Drivers that know 

only one turn movement 
0 100 Percentages  5 22 

212 NETSIM 
Percentage of Drivers that know 

two turn movements 
0 100 Percentages  95 78 

 

Table B2. Calibration Parameters in the First Experiment with McTrans Model 

SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration  

Value 

after 
calibration 

1 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8001-9 58 37 

2 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-9 58 68 

3 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-4 58 99 

4 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-1 58 14 

5 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-1 58 73 

6 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-2 58 80 

7 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-1 58 38 

8 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-2 68 45 

9 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8004-7 68 69 

10 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-2 68 26 

11 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-6 68 46 

12 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-5 68 89 

13 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-2 68 14 

14 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8006-5 68 72 

15 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8001-9 40 59 

16 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-9 40 42 

17 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-4 40 86 

18 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-1 40 17 

19 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 3-1 40 65 

20 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-2 50 43 

21 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-1 50 35 

22 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 7-2 50 80 

23 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8004-7 50 47 

24 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 6-2 50 57 

25 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-6 50 89 

26 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-5 50 66 

27 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-2 50 8 

28 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8006-5 50 99 

29 NETSIM 
Percentage of Drivers that know 

only one turn movement 
0 100 Percentages  5 79 

30 NETSIM 
Percentage of Drivers that know 

two turn movements 
0 100 Percentages  95 21 
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Table B3. Calibration Parameters in the Second Experiment with Reno network 

SN Model Parameter 
Lower 
bound 

Upper 
bound 

Units Links 

Value 

before 

calibration 

Value after 
calibration 

1 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-26 38 40 

2 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-41 36 23 

3 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-38 40 42 

4 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-27 38 42 

5 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-35 38 43 

6 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-42 38 38 

7 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-48 38 32 

8 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-19 38 44 

9 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-23 38 38 

10 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-21 40 16 

11 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-24 36 34 

12 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-25 36 86 

13 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 12-36 40 42 

14 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-40 38 38 

15 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-43 36 42 

16 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-46 38 40 

17 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-47 40 42 

18 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-49 26 18 

19 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-51 28 30 

20 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 22-45 28 86 

21 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-22 28 28 

22 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 10-11 30 26 

23 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 11-10 28 38 

24 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-3 26 30 

25 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 11-12 30 20 

26 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-6 26 49 

27 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 12-13 23 17 

28 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-12 30 30 

29 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-2 25 27 

30 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-14 30 26 

31 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-13 22 20 

32 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-7 26 24 

33 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 18-7 34 30 

34 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 19-7 38 34 

35 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 17-1 34 17 

36 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 20-2 34 32 

37 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 21-8 38 36 

38 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 23-8 34 28 

39 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 44-14 38 36 

40 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 24-9 30 34 

41 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 52-5 38 50 

42 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 30-9 30 34 

43 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 46-15 28 28 

44 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 33-4 26 22 

45 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 28-15 30 34 

46 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 35-4 30 16 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value after 

calibration 

47 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 49-16 28 24 

48 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 39-13 27 29 

49 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 55-7 26 22 

50 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 40-13 20 24 

51 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 50-16 28 34 

52 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 27-3 36 90 

53 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-52 36 36 

54 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-30 38 44 

55 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 31-10 38 36 

56 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-20 36 38 

57 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 34-11 38 36 

58 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 28-54 40 34 

59 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-54 36 36 

60 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 36-12 38 42 

61 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-55 40 40 

62 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 38-2 36 37 

63 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-55 36 40 

64 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 42-5 40 40 

65 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 25-9 50 52 

66 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8018-18 40 46 

67 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8019-19 50 50 

68 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8023-23 44 42 

69 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8024-24 48 48 

70 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8025-25 48 52 

71 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8026-26 46 42 

72 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8027-27 46 46 

73 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8031-31 48 55 

74 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8033-33 44 44 

75 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8035-35 50 44 

76 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8036-36 50 46 

77 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8038-38 48 48 

78 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8040-40 40 19 

79 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8042-42 48 85 

80 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8043-43 48 50 

81 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8044-44 50 48 

82 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8045-45 18 83 

83 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8048-48 26 22 

84 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-17 48 46 

85 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 20-17 40 38 

86 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 54-28 48 44 

87 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-4 48 38 

88 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-8 48 46 

89 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-26 40 38 

90 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-41 42 40 

91 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-38 40 32 

92 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 3-27 42 44 

93 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-35 42 44 

94 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-42 42 40 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value after 

calibration 

95 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 6-48 38 55 

96 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 7-19 40 40 

97 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-23 42 16 

98 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-21 40 43 

99 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 9-24 40 44 

100 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 9-25 38 11 

101 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 12-36 40 40 

102 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-40 40 42 

103 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 14-43 20 24 

104 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 15-46 21 21 

105 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 15-47 21 17 

106 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-49 20 14 

107 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-51 20 18 

108 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 22-45 20 16 

109 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-22 21 80 

110 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 10-11 20 28 

111 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 11-10 21 27 

112 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-3 21 25 

113 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 11-12 22 22 

114 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-6 28 30 

115 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 12-13 35 87 

116 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-12 30 28 

117 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 3-2 33 84 

118 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-14 30 24 

119 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 14-13 35 29 

120 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 6-7 30 26 

121 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 18-7 30 34 

122 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 19-7 32 72 

123 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 17-1 42 40 

124 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 20-2 45 47 

125 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 21-8 40 9 

126 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 23-8 46 38 

127 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 44-14 40 42 

128 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 24-9 40 44 

129 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 52-5 38 36 

130 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 30-9 42 87 

131 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 46-15 40 44 

132 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 33-4 46 46 

133 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 28-15 18 14 

134 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 35-4 20 16 

135 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 49-16 18 66 

136 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 39-13 27 29 

137 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 55-7 20 20 

138 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 40-13 25 27 

139 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 50-16 18 68 

140 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 27-3 32 31 

141 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-52 30 28 

142 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 9-30 30 32 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value after 

calibration 

143 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 31-10 30 32 

144 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-20 30 36 

145 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 34-11 30 28 

146 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 28-54 40 38 

147 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-54 42 42 

148 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 36-12 40 73 

149 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 7-55 48 38 

150 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 38-2 42 42 

151 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-55 42 99 

152 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 42-5 40 47 

153 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 25-9 42 31 

154 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8018-18 40 40 

155 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8019-19 40 44 

156 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8023-23 42 38 

157 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8024-24 42 42 

158 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8025-25 42 38 

159 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8026-26 40 44 

160 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8027-27 40 40 

161 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8031-31 40 40 

162 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8033-33 46 44 

163 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8035-35 40 54 

164 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8036-36 42 40 

165 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8038-38 40 38 

166 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8040-40 43 47 

167 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8042-42 41 45 

168 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8043-43 41 74 

169 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8044-44 40 32 

170 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8045-45 42 30 

171 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8048-48 42 42 

172 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-17 40 44 

173 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 20-17 42 40 

174 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 54-28 38 48 

175 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-4 32 28 

176 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 9-8 38 40 
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Table B4. Calibration Parameters in the Second Experiment with McTrans Model 

SN Model Parameter 
Lower 
bound 

Upper 
bound 

Units Links 

Value 

before 

calibration 

Value 

after 

calibration 

1 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8001-9 58 31 

2 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-9 58 14 

3 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-1 58 42 

4 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8003-3 58 83 

5 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-1 58 21 

6 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-3 58 89 

7 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-2 58 99 

8 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-7 68 16 

9 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8004-7 68 55 

10 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8005-6 68 23 

11 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-2 68 14 

12 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-5 68 27 

13 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-2 68 18 

14 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8006-5 68 85 

15 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8001-9 40 70 

16 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-9 40 97 

17 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-1 40 12 

18 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8003-3 40 90 

19 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 3-1 40 4 

20 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-3 40 43 

21 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-2 50 45 

22 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-7 50 61 

23 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8004-7 50 25 

24 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8005-6 50 26 

25 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 6-2 50 3 

26 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-5 50 69 

27 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-2 50 35 

28 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8006-5 50 70 
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Table B5. Calibration Parameters in the Third Experiment with Reno network 

SN Model Parameter 
Lower 
bound 

Upper 
bound 

Units Links 

Value 

before 

calibration 

Value 

after 

calibration 

1 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-26 38 89 

2 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-38 40 53 

3 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-33 36 36 

4 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-35 38 38 

5 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-42 38 42 

6 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-48 38 26 

7 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-18 38 63 

8 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-23 38 41 

9 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-24 36 62 

10 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-25 36 87 

11 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 10-31 40 44 

12 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-40 38 94 

13 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-43 36 53 

14 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-46 38 34 

15 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-49 26 41 

16 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-50 26 24 

17 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-51 28 20 

18 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 22-45 28 80 

19 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 11-10 28 64 

20 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-3 26 30 

21 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 11-12 30 97 

22 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 12-13 23 27 

23 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-5 30 60 

24 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-2 25 25 

25 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-14 48 48 

26 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-4 45 14 

27 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 18-7 34 30 

28 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 51-16 38 40 

29 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 19-7 38 36 

30 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 17-1 34 30 

31 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 20-2 34 37 

32 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 43-14 30 26 

33 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 21-8 38 36 

34 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 22-1 34 21 

35 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 23-8 34 28 

36 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 44-14 38 35 

37 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 30-9 30 14 

38 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 47-15 26 26 

39 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 28-15 30 30 

40 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 35-4 30 26 

41 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 54-16 28 31 

42 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 49-16 28 30 

43 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 39-13 27 31 

44 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 55-7 26 65 

45 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 50-16 28 17 

46 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 55-8 30 30 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value 

after 
calibration 

47 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 27-3 36 86 

48 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-52 36 78 

49 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-30 38 64 

50 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 31-10 38 48 

51 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 17-20 38 34 

52 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-20 36 97 

53 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 34-11 38 38 

54 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 28-54 40 38 

55 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-54 36 64 

56 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 38-2 36 32 

57 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-3 40 46 

58 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 42-5 40 40 

59 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 45-22 32 30 

60 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 25-9 50 50 

61 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8018-18 40 27 

62 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8019-19 50 33 

63 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8021-21 50 52 

64 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8024-24 48 42 

65 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8025-25 48 49 

66 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8027-27 46 44 

67 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8031-31 48 52 

68 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8033-33 44 45 

69 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8034-34 48 46 

70 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8036-36 50 66 

71 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8038-38 48 44 

72 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8039-39 49 95 

73 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8041-41 50 42 

74 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8042-42 48 46 

75 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8043-43 48 52 

76 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8044-44 50 48 

77 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8045-45 18 24 

78 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8046-46 26 18 

79 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8047-47 30 54 

80 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8048-48 26 97 

81 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-17 48 56 

82 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 20-17 40 38 

83 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-28 48 50 

84 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 54-28 48 56 

85 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-4 48 47 

86 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-8 48 14 

87 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-9 40 28 

88 NETSIM 
Duration of a lane-change 

manuever 
1 8 Seconds  2 6 

89 NETSIM 

Mean time for a driver to react 

to a sudden deceleration of the 
lead vehicle 

1 30 Tenths of seconds  5 6 

90 NETSIM 
Minimum deceleration for lane 

changing 
1 10 

Feet per second 
square 

 3 4 

91 NETSIM 
Difference in maximum and 

minimum acceptable 
5 15 

Feet per second 
square 

 7 11 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value 

after 
calibration 

deceleration for a mandatory 
lane change 

92 NETSIM 

Difference in maximum and 
minimum acceptable 

deceleration for a discretionary 

lane change 

5 15 
Feet per second 

square 
 5 15 

93 NETSIM Deceleration rate of lead vehicle 10 15 
Feet per second 

square 
 10 11 

94 NETSIM 
Deceleration rate of follower 

vehicle 
10 15 

Feet per second 

square 
 10 12 

95 NETSIM 
Driver type factor used to 

compute driver aggressiveness 
15 50 N/A  20 49 

96 NETSIM Urgency threshold 0 5 

Tenths of a 

second squared 
per foot 

 1 2 

97 NETSIM Safety factor x 10 6 10 Tenths of units  6 7 

98 NETSIM 
Percentage of drivers who 

cooperate with a lane changer 
10 100 Percentage  30 39 

99 NETSIM 

Headway below which all 

drivers will attempt to change 

lanes 

1 30 Tenths of seconds  15 14 

100 NETSIM 

Headway above which no 

drivers will attempt to change 
lanes 

30 100 Tenths of seconds  40 45 

101 NETSIM 
Mean longitudinal distance over 
which drivers decide to perform 

one lane change 

50 2500 Feet  240 475 

102 NETSIM 
Acceptable Gap for Driver Type 

1 
15 75 Tenths of seconds  45 45 

103 NETSIM 
Acceptable Gap for Driver Type 

2 
15 75 Tenths of seconds  40 38 

104 NETSIM 
Acceptable Gap for Driver Type 

3 
15 75 Tenths of seconds  37 37 

105 NETSIM 
Acceptable Gap for Driver Type 

4 
15 75 Tenths of seconds  34 15 

106 NETSIM 
Acceptable Gap for Driver Type 

5 
15 75 Tenths of seconds  31 57 

107 NETSIM 
Acceptable Gap for Driver Type 

6 
15 75 Tenths of seconds  30 28 

108 NETSIM 
Acceptable Gap for Driver Type 

7 
15 75 Tenths of seconds  27 46 

109 NETSIM 
Acceptable Gap for Driver Type 

8 
15 75 Tenths of seconds  24 24 

110 NETSIM 
Acceptable Gap for Driver Type 

9 
15 75 Tenths of seconds  21 21 

111 NETSIM 
Acceptable Gap for Driver Type 

10 
15 75 Tenths of seconds  16 17 

112 NETSIM 
Additional Gap Time for 

Crossing 1 Lane 
10 75 Tenths of seconds  10 31 

113 NETSIM 
Additional Gap Time for 

Crossing 2 Lanes 
10 75 Tenths of seconds  19 55 

114 NETSIM 
Additional Gap Time for 

Crossing 3 Lanes 
10 75 Tenths of seconds  23 69 

115 NETSIM 
Additional Gap Time for 

Crossing 4 Lanes 
10 75 Tenths of seconds  28 29 

116 NETSIM 
Additional Gap Time for 

Crossing 5 Lanes 
10 75 Tenths of seconds  31 18 

117 NETSIM 
Additional Gap Time for 

Crossing 6 Lanes 
10 75 Tenths of seconds  35 37 
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SN Model Parameter 
Lower 

bound 

Upper 

bound 
Units Links 

Value 

before 
calibration 

Value 

after 
calibration 

118 NETSIM 
Additional Gap Time for 

Crossing 7 Lanes 
10 75 Tenths of seconds  38 32 

119 NETSIM 
Additional Gap Time for 

Crossing 8 Lanes 
10 75 Tenths of seconds  41 40 

120 NETSIM 
Additional Gap Time for 

Crossing 9 Lanes 
10 75 Tenths of seconds  44 19 

121 NETSIM 
Additional Gap Time for 

Crossing 10 Lanes 
10 75 Tenths of seconds  46 45 

122 NETSIM 
Percentage of Drivers that know 

only one turn movement 
0 100 Percentages  5 50 

123 NETSIM 
Percentage of Drivers that know 

two turn movements 
0 100 Percentages  95 50 

 

Table B6. Calibration Parameters in the Third Experiment with McTrans Model 

SN Model Parameter 
Lower 
bound 

Upper 
bound 

Units Links 

Value 

before 

calibration  

Value 

after 

calibration 

1 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-4 58 80 

2 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-1 58 20 

3 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8002-4 58 53 

4 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8003-3 58 42 

5 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-1 58 33 

6 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-3 58 70 

7 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-2 58 15 

8 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-1 58 48 

9 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-2 68 21 

10 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8004-7 68 48 

11 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-2 68 19 

12 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-6 68 22 

13 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-2 68 16 

14 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8006-5 68 65 

15 NETSIM 
Percentage of Drivers that know 

only one turn movement 
0 100 Percentages  5 29 

16 NETSIM 
Percentage of Drivers that know 

two turn movements 
0 100 Percentages  95 71 
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